Data Mining with Algorithmic Transparency



Journal Title

Journal ISSN

Volume Title


Springer Verlag


In this paper, we investigate whether decision trees can be used to interpret a black-box classifier without knowing the learning algorithm and the training data. Decision trees are known for their transparency and high expressivity. However, they are also notorious for their instability and tendency to grow excessively large. We present a classifier reverse engineering model that outputs a decision tree to interpret the black-box classifier. There are two major challenges. One is to build such a decision tree with controlled stability and size, and the other is that probing the black-box classifier is limited for security and economic reasons. Our model addresses the two issues by simultaneously minimizing sampling cost and classifier complexity. We present our empirical results on four real datasets, and demonstrate that our reverse engineering learning model can effectively approximate and simplify the black box classifier.



Information organization, Decision trees, Algorithms, Reverse engineering, Transparency, Data mining


©2018 Springer International Publishing AG, part of Springer Nature