Multi-Timescale Analysis of Phase Transitions in Precessing Black-Hole Binaries

DSpace/Manakin Repository

Multi-Timescale Analysis of Phase Transitions in Precessing Black-Hole Binaries

Show full item record

Title: Multi-Timescale Analysis of Phase Transitions in Precessing Black-Hole Binaries
Author(s):
Gerosa, D.;
Kesden, Michael (UT Dallas);
Sperhake, U.;
Berti, E.;
O'Shaughnessy, R.
Item Type: Article
Keywords: Show Keywords
Abstract: The dynamics of precessing binary black holes (BBHs) in the post-Newtonian regime has a strong timescale hierarchy: the orbital timescale is very short compared to the spin-precession timescale which, in turn, is much shorter than the radiation-reaction timescale on which the orbit is shrinking due to gravitational-wave emission. We exploit this timescale hierarchy to develop a multiscale analysis of BBH dynamics elaborating on the analysis of Kesden et al. [Phys. Rev. Lett. 114, 081103 (2015)]. We solve the spin-precession equations analytically on the precession time and then implement a quasiadiabatic approach to evolve these solutions on the longer radiation-reaction time. This procedure leads to an innovative "precession-averaged" post-Newtonian approach to studying precessing BBHs. We use our new solutions to classify BBH spin precession into three distinct morphologies, then investigate phase transitions between these morphologies as BBHs inspiral. These precession-averaged post-Newtonian inspirals can be efficiently calculated from arbitrarily large separations, thus making progress towards bridging the gap between astrophysics and numerical relativity.
Publisher: American Physical Society
ISSN: 1550-7998
Persistent Link: http://hdl.handle.net/10735.1/4915
http://dx.doi.org/10.1103/PhysRevD.92.064016
Bibliographic Citation: Gerosa, D., M. Kesden, U. Sperhake, E. Berti, et al. 2015. "Multi-timescale analysis of phase transitions in precessing black-hole binaries." Physical Review D - Particles, Fields, Gravitation and Cosmology 92(6), doi:10.1103/PhysRevD.92.064016.
Terms of Use: ©2015 American Physical Society

Files in this item

Files Size Format View
NSM-4147-274219.19.pdf 4.083Mb PDF View/Open Article

This item appears in the following Collection(s)


Show full item record