Calculation of Room Temperature Conductivity and Mobility in Tin-Based Topological Insulator Nanoribbons

DSpace/Manakin Repository

Calculation of Room Temperature Conductivity and Mobility in Tin-Based Topological Insulator Nanoribbons

Show full item record

Title: Calculation of Room Temperature Conductivity and Mobility in Tin-Based Topological Insulator Nanoribbons
Author(s):
Vandenberghe, William G.;
Fischetti, Massimo V.
Item Type: article
Keywords: Show Keywords
Abstract: Monolayers of tin (stannanane) functionalized with halogens have been shown to be topological insulators. Using density functional theory (DFT), we study the electronic properties and room-temperature transport of nanoribbons of iodine-functionalized stannanane showing that the overlap integral between the wavefunctions associated to edge-states at opposite ends of the ribbons decreases with increasing width of the ribbons. Obtaining the phonon spectra and the deformation potentials also from DFT, we calculate the conductivity of the ribbons using the Kubo-Greenwood formalism and show that their mobility is limited by inter-edge phonon backscattering. We show that wide stannanane ribbons have a mobility exceeding 10 6 cm(2)/Vs. Contrary to ordinary semiconductors, two-dimensional topological insulators exhibit a high conductivity at low charge density, decreasing with increasing carrier density. Furthermore, the conductivity of iodine-functionalized stannanane ribbons can be modulated over a range of three orders of magnitude, thus rendering this material extremely interesting for classical computing applications.
ISSN: 0021-8979
Persistent Link: http://dx.doi.org/10.1063/1.4901063
http://hdl.handle.net/10735.1/4426
Terms of Use: ©2014 AIP Publishing LLC

Files in this item

Files Size Format View
JECS-2310-271994.06.pdf 986.5Kb PDF View/Open Article

This item appears in the following Collection(s)


Show full item record