Search for the isospin violating decay $Y(4260) \rightarrow J/\psi \eta \pi^0$
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8 COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
10 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
11 Guangxi Normal University, Nanning 530004, People’s Republic of China
12 Hangzhou Normal University, Hangzhou 310023, People’s Republic of China
13 Hunan University, Changsha 410082, People’s Republic of China
14 Indiana University, Bloomington, Indiana 47405, USA
15 INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy
16 INFN and University of Perugia, I-06100, Perugia, Italy
17 INFN Sezione di Ferrara, I-44122, Ferrara, Italy
18 University of Ferrara, I-44122, Ferrara, Italy
19 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
20a Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
20b Justus Liebig University Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
21a University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
21b University of Science and Technology of China, Hefei 230026, People’s Republic of China
22 KVI-CART, University of Groningen, NL-9747 AA Groningen, Netherlands
23 Lanzhou University, Lanzhou 730000, People’s Republic of China
24 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
25 Shandong University, Jinan 250100, People’s Republic of China
26 Shanxi University, Taiyuan 030006, People’s Republic of China
27 Sichuan University, Chengdu 610064, People’s Republic of China
28 Soochow University, Suzhou 215006, People’s Republic of China
29 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
30 Tsinghua University, Beijing 100084, People’s Republic of China
31 Istanbul Aydin University, 34295 Sefakoy, Istanbul, Turkey
32 Istanbul University, 34722 Istanbul, Turkey
33 Uludag University, 16059 Bursa, Turkey
34 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
35 University of Hawaii, Honolulu, Hawaii 96822, USA
36 University of Minnesota, Minneapolis, Minnesota 55455, USA
37 University of Rochester, Rochester, New York 14627, USA
38 University of Science and Technology of China, Hefei 230026, People’s Republic of China
39 University of South China, Hengyang 421001, People’s Republic of China
40 University of the Punjab, Lahore-54590, Pakistan
41 University of Turin, I-10125, Turin, Italy
42 University of Eastern Piedmont, I-15121, Alessandria, Italy
43 INFN, I-10125 Turin, Italy
44 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
I. INTRODUCTION

The $Y(4260)$ charmoniumlike state was first observed in its decay to $\pi^+\pi^-J/\psi$ \cite{1} and has a small coupling to open charm decay modes \cite{2}. $Y(4260)$ is a vector ($J^{PC} = 1^{--}$) state that is only barely observable as an s-channel resonance in e^+e^- collisions and that appears at an energy where no conventional charmonium state is expected. Since its discovery, many theoretical studies have been carried out considering the $Y(4260)$ as a tetraquark state \cite{3}, $D\bar{D}$ or $D_0\bar{D}^*$ hadronic molecule \cite{4}, hybrid charmonium \cite{5}, baryonium state \cite{6}, etc.

Recently, in the study of $Y(4260) \rightarrow \pi^+\pi^- J/\psi$, a charmoniumlike structure, the $Z_c(3900)^\pm$, was observed in the $\pi^± J/\psi$ invariant mass spectrum by the BESIII \cite{7} and Belle experiments \cite{8} and confirmed shortly thereafter with CLEO-c data \cite{9}. In the molecule model \cite{10}, the $Y(4260)$ is proposed to have a large $D\bar{D}$ component, while $Z_c(3900)^\pm$ has a $D\bar{D}^*$ component.

BESIII recently reported the observation of $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \pi^+\pi^- J/\psi$ \cite{11}. The cross section measurements strongly support the existence of the radiative transition $Y(4260) \rightarrow \gamma X(3872)$. One significant feature of the $X(3872)$ that differs from conventional charmonium is that the decay branching fraction of $X(3872)$ to $\pi^+\pi^- J/\psi$ is comparable to $\pi^+\pi^- J/\psi$ \cite{12,13}, so the isospin violating process occurs on a large scale.

Isospin violating decays can be used to probe the nature of heavy quarkonium. The hadro-charmonium model \cite{14} and tetraquark models \cite{15,16} predict that the reaction $T(5S) \rightarrow \eta\pi^0 + \text{bottomonium}$ should be observable. The tetraquark model \cite{17} also predicts that Z_c^0 can be produced in $Y(4260) \rightarrow J/\psi\eta\pi^0$ with Z_c^0 decaying into $J/\psi\pi^0$ and possibly $J/\psi\eta$ in the presence of sizable isospin violation. The molecular model \cite{18} predicts a peak in the cross section of $Y(4260) \rightarrow J/\psi\eta\pi^0$ at the $D\bar{D}$ threshold and a narrow peak in the $J/\psi\eta$ invariant mass spectrum at the $D\bar{D}^*$ threshold.

In this paper, we present results on a search for the isospin violating decay $Y(4260) \rightarrow J/\psi\eta\pi^0$, with $J/\psi \rightarrow e^+e^-/\mu^+\mu^-$, $\pi^0 \rightarrow \gamma\gamma$, and $\eta \rightarrow \gamma\gamma$ (the other decay modes of η are not used due to much lower detection efficiency and branching fraction), based on e^+e^- annihilation data collected with the BESIII detector operating at the BEPCII storage ring \cite{19} at center-of-mass energies of $\sqrt{s} = 4.009, 4.226, 4.257, 4.358, 4.416, \text{and } 4.599 \text{ GeV.}$

II. BESIII DETECTOR AND MONTE CARLO SIMULATION

The BESIII detector, described in detail in Ref. \cite{19}, has a geometrical acceptance of 93% of 4π. A small-cell helium-based main drift chamber (MDC) provides a charged particle momentum resolution of 0.5% at 1 GeV/c in a 1 T magnetic field and supplies energy-loss (dE/dx) measurements with a resolution of 6% for minimum-ionizing pions. The electromagnetic calorimeter (EMC) measures photon energies with a resolution of 2.5% (5%) at 1.0 GeV in the barrel (end caps). Particle identification is provided by a time-of-flight system with a time resolution of 80 ps (110 ps) for the barrel (end caps). The muon system (MUC), located in the iron flux return yoke of the magnet, provides 2 cm position resolution and detects muon tracks with momentum greater than 0.5 GeV/c.

The GEANT4-based \cite{20} Monte Carlo (MC) simulation software BOOST \cite{21} includes the geometric description of the BESIII detector and a simulation of the detector response. It is used to optimize event selection criteria, estimate backgrounds, and evaluate the detection efficiency. For each energy point, we generate large signal MC samples of $e^+e^- \rightarrow J/\psi\eta\pi^0$, $J/\psi \rightarrow e^+e^-/\mu^+\mu^-$.
\(\eta \rightarrow \gamma \gamma \), and \(\pi^0 \rightarrow \gamma \gamma \) uniformly in phase space. Effects of initial state radiation (ISR) are simulated with KKMC [22], where the Born cross section of \(e^+ e^- \rightarrow J/\psi \eta \pi^0 \) is assumed to follow a \(Y(4260) \) Breit–Wigner line shape with resonance parameters taken from the Particle Data Group (PDG) [23]. Final state radiation effects associated with charged particles are handled with PHOTOS [24].

To study possible backgrounds, a MC sample of inclusive \(Y(4260) \) decays, equivalent to an integrated luminosity of 825.6 pb\(^{-1} \), is also generated at \(\sqrt{s} = 4.260 \) GeV. In these simulations, the \(Y(4260) \) is allowed to decay generally, with the main known decay channels being generated using EVTGEN [25] with branching fractions set to world average values [23]. The remaining events associated with charmonium decays are generated with LUNDCHARM [26], while continuum hadronic events are generated with PYTHIA [27]. QED events (\(e^+ e^- \rightarrow e^+ e^- \), \(\mu^+ \mu^- \), and \(\gamma \gamma \)) are generated with KKMC [22]. Backgrounds at other energy points are expected to be similar.

III. EVENT SELECTION

Events with two charged tracks with a net charge of zero are selected. For each good charged track, the polar angle in the MDC must satisfy \(| \cos \theta | < 0.93 \), and the point of closest approach to the \(e^+ e^- \) interaction point must be within \(\pm 10 \) cm in the beam direction and within \(\pm 1 \) cm in the plane perpendicular to the beam direction. The momenta of leptons from the \(J/\psi \) decays in the laboratory frame are required to be larger than 1.0 GeV/c. \(E/p \) is used to separate electrons from muons, where \(E \) is the energy deposited in the EMC and \(p \) is the momentum measured by the MDC. For electron candidates, \(E/p \) should be larger than 0.7, while for muons, it should be less than 0.3. To suppress background from events with pion tracks in the final state, at least one of the two muons is required to have at least five layers with valid hits in the MUC.

Showers identified as photon candidates must satisfy fiducial and shower quality as well as timing requirements. The minimum EMC energy is 25 MeV for barrel showers (\(| \cos \theta | < 0.80 \)) and 50 MeV for end cap showers (0.86 < \(| \cos \theta | < 0.92 \)). To eliminate showers produced by charged particles, a photon must be separated by at least 5 deg from any charged track. The time information from the EMC is also used to suppress electronic noise and energy deposits unrelated to the event. At least four good photon candidates in each event are required.

To improve the momentum resolution and reduce the background, the event is subjected to a four-constraint (4C) kinematic fit under the hypothesis \(e^+ e^- \rightarrow \gamma \gamma \gamma \gamma l^+ l^- \) (\(l = e/\mu \)), and the \(\chi^2 \) is required to be less than 40. For events with more than four photons, the four photons with the smallest \(\chi^2 \) from the 4C fit are assigned as the photons from \(\eta \) and \(\pi^0 \).

![FIG. 1](color online). Scatter plot of \(M(\gamma \gamma) \) with all six combinations for events in the \(J/\psi \) signal region (left) and distribution of \(M(l^+ l^-) \) for events in the \(\pi^0/\pi^0 \) signal region (right) for data at \(\sqrt{s} = 4.226 \) GeV (top) and 4.257 GeV (bottom).
SEARCH FOR THE ISOSPIN VIOLATING DECAY $e^+e^-\rightarrow J/\psi\eta^0$

FIG. 2. Scatter plot of $M(\gamma \gamma)$ for the combination closest to the η^0 signal region for events in the J/ψ signal region (top), projection of the scatter plot on $M(\gamma \gamma)$ with $M(\gamma \gamma)$ in π^0 signal region (middle), and projection of the scatter plot on $M(\gamma \gamma)$ with $M(\gamma \gamma)$ in η signal region (bottom) for data at $\sqrt{s} = 4.226$ GeV (left) and 4.257 GeV (right).

IV. CROSS SECTION UPPER LIMITS

Since no $J/\psi\eta^0$ signal above the background is observed, upper limits on the Born cross section of $e^+e^-\rightarrow J/\psi\eta^0$ at the 90% C.L. are determined using the formula

$$\sigma_{\text{Born}} < \frac{N_{\text{up}}^{\text{obs}}}{L(1 + \delta^r)(1 + \delta^e)(e^{ee} B^{ee} + e^{\mu\mu} B^{\mu\mu}) B^{\eta^0} B^{\eta}} \cdot (1)$$

where $N_{\text{up}}^{\text{obs}}$ is the upper limit on the number of signal events; L is the integrated luminosity; $(1 + \delta^r)$ is the radiative correction factor, which is taken from a QED calculation; $(1 + \delta^e)$ is the vacuum polarization factor including leptonic and hadronic parts and taken from a QED calculation with an accuracy of 0.5% [28]; e^{ee} and $e^{\mu\mu}$ are the efficiencies for e^+e^- and $\mu^+\mu^-$ modes, respectively; B^{ee} and $B^{\mu\mu}$ are the branching fractions of $J/\psi\rightarrow e^+e^-$ and $J/\psi\rightarrow \mu^+\mu^-$ [23], respectively; and B^{η^0} and B^{η} are the branching fractions of $\eta\rightarrow \gamma\gamma$ and $\pi^0\rightarrow \gamma\gamma$ [23], respectively.

The efficiency corrected upper limit on the number of signal events $N_{\text{up}}^{\text{obs}} < N_{\text{up}}^{\text{obs}} / (e^{ee} B^{ee} + e^{\mu\mu} B^{\mu\mu}) B^{\eta^0} B^{\eta}$ is estimated with N^{obs} and N^{bkg} using the profile likelihood method, which is implemented by TRolke in the ROOT framework [29].

The calculation for obtaining $N_{\text{up}}^{\text{obs}}$ includes the background fluctuation and the systematic uncertainty of the cross section measurement. The background fluctuation is assumed to follow a Poisson distribution. The systematic uncertainty of the cross section is taken as a Gaussian uncertainty.

The systematic uncertainty of the cross section measurement in Eq. (1) includes the luminosity measurement, detection efficiency, and intermediate decay branching fractions. The systematic uncertainties of the luminosity, track reconstruction, and photon detection are 1.0% [11], 1.0% per track [30], and 1.0% per photon [31], respectively.

The systematic uncertainties from the branching fraction of π^0 and η decays are taken from the PDG [23]. These sources of systematic uncertainty, which are summarized in the top part of Table II, are common for e^+e^- and $\mu^+\mu^-$ modes. The following sources of systematic uncertainty, which are uncorrelated for the e^+e^- and $\mu^+\mu^-$ modes, are summarized in the bottom part of Table II. The systematic uncertainty of the cross section measurement in Eq. (1) includes the luminosity measurement, detection efficiency, and intermediate decay branching fractions. The systematic uncertainties of the luminosity, track reconstruction, and photon detection are 1.0% [11], 1.0% per track [30], and 1.0% per photon [31], respectively.

The systematic uncertainties from the branching fraction of π^0 and η decays are taken from the PDG [23]. These sources of systematic uncertainty, which are summarized in the top part of Table II, are common for e^+e^- and $\mu^+\mu^-$ modes. The following sources of systematic uncertainty, which are uncorrelated for the e^+e^- and $\mu^+\mu^-$ modes, are summarized in the bottom part of Table II. The systematic uncertainty of the cross section measurement in Eq. (1) includes the luminosity measurement, detection efficiency, and intermediate decay branching fractions. The systematic uncertainties of the luminosity, track reconstruction, and photon detection are 1.0% [11], 1.0% per track [30], and 1.0% per photon [31], respectively.

The systematic uncertainties from the branching fraction of π^0 and η decays are taken from the PDG [23]. These sources of systematic uncertainty, which are summarized in the top part of Table II, are common for e^+e^- and $\mu^+\mu^-$ modes. The following sources of systematic uncertainty, which are uncorrelated for the e^+e^- and $\mu^+\mu^-$ modes, are summarized in the bottom part of Table II.
uncertainty from the branching fraction of J/ψ decay is taken from the PDG [23]. The systematic uncertainty from the requirement on the number of MUC hits is 3.6% and estimated by comparing the efficiency of the MUC requirement between data and MC in the control sample $e^+e^- \rightarrow \pi^0\pi^0 J/\psi$ at $\sqrt{s} = 4.257$ GeV. The systematic uncertainty from the requirement of the J/ψ signal region is estimated by smear the invariant mass of J/ψ with and without the smear is taken as the systematic uncertainty. The systematic uncertainty from the MC model is estimated by generating a MC sample with the angular distribution of leptons determined from the $\pi^0\pi^0 J/\psi$ data. The systematic uncertainty due to kinematic fitting is estimated by correcting the helix parameters of charged tracks according to the method described in Ref. [32], where the correction factors are obtained from the control sample $\psi' \rightarrow \gamma X_{eJ}$ and the difference in the detection efficiency between with and without making the correction to the MC is taken as the systematic uncertainty. The uncorrelated systematic uncertainties for the electron and muon channels are combined by taking the weighted average with weights $\epsilon_{ee} B_{ee}^{\text{up}}$ and $\epsilon_{\mu\mu} B_{\mu\mu}^{\text{up}}$, respectively. The total systematic uncertainty is obtained by summing all the sources of the systematic uncertainty in quadrature.

The systematic uncertainty on the size of the background is estimated by evaluating N^{up} with different signal and sideband regions for η and π^0. The most conservative N^{up} is taken as the final result, as listed in Table I. The upper limits on the Born cross section of $e^+e^- \rightarrow J/\psi \eta \pi^0 (\sigma_{UL}^{\text{Born}})$ assuming it follows a $Y(4260)$ Breit–Wigner line shape are listed in Table I.

For comparison, the radiative correction factor and detection efficiency have been recalculated assuming the $e^+e^- \rightarrow J/\psi \eta \pi^0$ cross section follows alternative line shapes. If the cross section follows the line shape of the $Y(4040)$, the upper limit on the Born cross section is 4.1 pb at $\sqrt{s} = 4.009$ GeV. For a $Y(4360)$ line shape, it is 1.6 pb at $\sqrt{s} = 4.358$ GeV. For a $Y(4415)$ line shape, it is

<table>
<thead>
<tr>
<th>\sqrt{s} (GeV)</th>
<th>\mathcal{L} (pb$^{-1}$)</th>
<th>$(1 + \delta^e)$</th>
<th>$(1 + \delta^\mu)$</th>
<th>$(e^e B_{ee}^{\text{up}} + e^\mu B_{\mu\mu}^{\text{up}})$ (%)</th>
<th>N^{obs}</th>
<th>N^{bkgs}</th>
<th>N^{up}</th>
<th>$\sigma_{UL}^{\text{Born}}$ (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.009</td>
<td>482.0</td>
<td>0.838</td>
<td>1.044</td>
<td>2.1 ± 0.1 (sys)</td>
<td>5</td>
<td>1</td>
<td>598.1</td>
<td>3.6</td>
</tr>
<tr>
<td>4.226</td>
<td>1047.3</td>
<td>0.844</td>
<td>1.056</td>
<td>2.2 ± 0.1 (sys)</td>
<td>12</td>
<td>11</td>
<td>592.9</td>
<td>1.7</td>
</tr>
<tr>
<td>4.257</td>
<td>825.6</td>
<td>0.847</td>
<td>1.054</td>
<td>2.2 ± 0.1 (sys)</td>
<td>12</td>
<td>8</td>
<td>654.1</td>
<td>2.4</td>
</tr>
<tr>
<td>4.358</td>
<td>539.8</td>
<td>0.942</td>
<td>1.051</td>
<td>2.2 ± 0.1 (sys)</td>
<td>5</td>
<td>4</td>
<td>283.2</td>
<td>1.4</td>
</tr>
<tr>
<td>4.416</td>
<td>1028.9</td>
<td>0.951</td>
<td>1.053</td>
<td>2.3 ± 0.1 (sys)</td>
<td>5</td>
<td>6</td>
<td>342.7</td>
<td>0.9</td>
</tr>
<tr>
<td>4.599</td>
<td>566.9</td>
<td>0.965</td>
<td>1.055</td>
<td>2.4 ± 0.1 (sys)</td>
<td>6</td>
<td>3</td>
<td>418.4</td>
<td>1.9</td>
</tr>
</tbody>
</table>

TABLE II. Systematic uncertainties in the $J/\psi \eta \pi^0$ cross section measurement at each energy point (in %). The items in parentheses in the bottom part of the table are the uncorrelated systematic uncertainties for the e^+e^- (first) and $\mu^+\mu^-$ (second) modes.

<table>
<thead>
<tr>
<th>Sources/ \sqrt{s} (GeV)</th>
<th>4.009</th>
<th>4.226</th>
<th>4.257</th>
<th>4.358</th>
<th>4.416</th>
<th>4.599</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>MDC tracking</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Photon reconstruction</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>$B(\pi^0 \rightarrow \gamma\gamma)$, $B(\eta \rightarrow \gamma\gamma)$</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$B(J/\psi \rightarrow l^+ l^-$)</td>
<td>(0.5, 0.5)</td>
<td>(0.5, 0.5)</td>
<td>(0.5, 0.5)</td>
<td>(0.5, 0.5)</td>
<td>(0.5, 0.5)</td>
<td>(0.5, 0.5)</td>
</tr>
<tr>
<td>MUC hits</td>
<td>(0.3, 0.36)</td>
<td>(0.3, 0.36)</td>
<td>(0.3, 0.36)</td>
<td>(0.3, 0.36)</td>
<td>(0.3, 0.36)</td>
<td>(0.3, 0.36)</td>
</tr>
<tr>
<td>J/ψ mass resolution</td>
<td>(0.2, 0.13)</td>
<td>(0.8, 1.2)</td>
<td>(0.5, 1.3)</td>
<td>(0.2, 0.7)</td>
<td>(0.7, 1.6)</td>
<td>(0.1, 0.6)</td>
</tr>
<tr>
<td>Decay model</td>
<td>(1.5, 1.9)</td>
<td>(0.9, 1.1)</td>
<td>(0.4, 0.6)</td>
<td>(0.2, 0.7)</td>
<td>(0.7, 0.2)</td>
<td>(0.2, 0.2)</td>
</tr>
<tr>
<td>Kinematic fitting</td>
<td>(1.2, 0.9)</td>
<td>(1.1, 1.2)</td>
<td>(0.9, 0.9)</td>
<td>(0.7, 1.2)</td>
<td>(1.1, 1.0)</td>
<td>(1.0, 1.4)</td>
</tr>
<tr>
<td>Total</td>
<td>5.3</td>
<td>5.3</td>
<td>5.2</td>
<td>5.2</td>
<td>5.3</td>
<td>5.2</td>
</tr>
</tbody>
</table>
1.5 pb at $\sqrt{s} = 4.358$ GeV and 1.0 pb at $\sqrt{s} = 4.416$ GeV. For a $\Upsilon(4660)$ line shape, it is 2.0 pb at $\sqrt{s} = 4.599$ GeV.

It is also possible to set upper limits on $e^+e^- \rightarrow Z_0^0 \pi^0 \rightarrow J/\psi \eta \pi^0$. The number of observed events and number of estimated background events in the Z_0^0 signal region ($3.850 < M(J/\psi \eta) < 3.940$ GeV/c^2) are 7 and 4 ± 2, respectively, at $\sqrt{s} = 4.226$ GeV, and 8 and 3 ± 2, respectively, at $\sqrt{s} = 4.257$ GeV. The upper limit on $\sigma(e^+e^- \rightarrow Z_0^0 \pi^0 \rightarrow J/\psi \eta \pi^0)$ is determined to be 1.3 pb at $\sqrt{s} = 4.226$ GeV and 2.0 pb at $\sqrt{s} = 4.257$ GeV, where only the statistical uncertainty is given. Compared to the measured cross section of $e^+e^- \rightarrow Z_0^0 \pi^0 \rightarrow J/\psi \eta \pi^0$ [33], the upper limit on the ratio of the branching fraction $B(Z_0^0 \rightarrow J/\psi \eta \pi^0)$ at the 90% confidence level is 0.15 at $\sqrt{s} = 4.226$ GeV and 0.65 at $\sqrt{s} = 4.257$ GeV.

V. SUMMARY

In summary, using data collected with the BESIII detector, a search for the isospin violating decay $\Upsilon(4260) \rightarrow J/\psi \eta \pi^0$ is performed. No statistically significant signal is observed. The Born cross sections of $e^+e^- \rightarrow J/\psi \eta \pi^0$ at the 90% confidence level limits at $\sqrt{s} = 4.009$, 4.226, 4.257, 4.358, 4.416, and 4.599 GeV are determined to be 3.6, 1.7, 2.4, 1.4, 0.9, and 1.9 pb, respectively. The upper limits are well above the prediction for the molecule model [18].

Search for the Isospin Violating Decay $Y(4260) \rightarrow J/\psi\eta\pi^0$

©2015 American Physical Society

Citation: