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We study the effect of noise on the dynamics of passively mode-locked semiconductor lasers both experimentally
and theoretically. A method combining analytical and numerical approaches for estimation of pulse timing jitter is
proposed. We investigate how the presence of dynamical features such as wavelength bistability in a quantum-dot
laser affects timing jitter. © 2014 Optical Society of America
OCIS codes: (140.4050) Mode-locked lasers; (140.5960) Semiconductor lasers; (190.1450) Bistability; (230.5590)

Quantum-well, -wire and -dot devices; (250.5960) Semiconductor lasers.
http://dx.doi.org/10.1364/OL.39.006815

Semiconductor mode-locked lasers received much atten-
tion in the last decade due to their multiple potential
applications including high-speed optical telecommuni-
cations and clocking [1,2]. Pulses generated by these
lasers are affected by noise due to spontaneous emission
and other factors such as cavity optical-length fluctua-
tions. In particular, their temporal positions in a pulse
train deviate from those of the perfectly periodic output.
This phenomenon called timing jitter limits the perfor-
mance of mode-locked devices [3]. Passive mode-locking
is an attractive technique for periodic short-pulse gener-
ation due to simplicity of implementation and handling as
compared to other techniques such as hybrid or active
mode-locking. However, in the absence of external
reference clock, passively mode-locked lasers exhibit
relatively large pulse timing jitter [4]. Bistable semicon-
ductor lasers can be used as a basic element for optical
switches [5,6] where the timing jitter can play a signifi-
cant role as well.
Analytical approach to the study of the influence of

noise on mode-locked pulses propagating in the laser
cavity was developed by Haus and Mecozzi [7]. Later this
technique was extended to include the effects of carrier
density in semiconductor lasers [8]. However, many
simplifications involved in the analysis of Refs. [7,8] limit
its applicability to modeling dynamics of semiconductor
lasers under the influence of noise. In the last two dec-
ades, extensive numerical simulations of traveling wave
[9,10] and delay differential [11] models were performed
to study timing jitter for different laser device configura-
tions. In this report using a delay differential equation
(DDE) model of a two-section passively mode-locked
semiconductor laser [12], we study the effect of noise
on the characteristics of fundamental mode-locked re-
gime and develop a semianalytical method for estimation

of pulse timing jitter, which helps us to avoid high
computational cost of a purely numerical approach. With
the help of DDE-BIFTOOL [13], we perform numerical
bifurcation analysis of the model and demonstrate the
existence of bistability between two fundamental
mode-locked regimes with different pulse repetition
frequencies. It was demonstrated experimentally that
at low currents, the pulse timing jitter decreases monoto-
nously with the increase of the injection current [9],
whereas at higher currents, it may increase with the cur-
rent [14]. By varying the injection current applied to the
gain section, we show both experimentally and theoreti-
cally that the pulse timing jitter can exhibit sharp peaks
in the vicinity of a bifurcation point of the mode-locked
regime. We study how the presence of dynamical insta-
bility can induce a dramatic increase of the timing jitter
of a mode-locked regime. Furthermore, we demonstrate
an abrupt drop of the timing jitter level after a transition
between two branches of fundamental mode-locked
regime. The observed dependencies of the jitter on the
injection current can be considered as general patterns
for the semiconductor lasers with transitions between
two bistable mode-locked regimes. We find both theoreti-
cally and experimentally that, in some quantum-dot laser
samples, timing jitter can be reduced with the additional
increase of the injection current, which also shifts the
mode-locking frequency.

We consider a DDE model of a two-section passively
mode-locked semiconductor laser introduced in [12]:
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∂tG � g0 − γgG − �eG − 1�jAj2; (2)

∂tQ � q0 − γqQ − s�1 − e−Q�eGjAj2; (3)

where A�t� is the electric field envelope,G�t� and Q�t� are
saturable gain and loss introduced by the gain and
absorber sections correspondingly, τ is the cold cavity
round-trip time, g0 and q0 are unsaturated gain (pump)
and absorption parameters, αg;q are linewidth enhance-
ment factors in the gain and absorber sections, s is a sat-
uration parameter, γg;q are carrier relaxation rates, γ is
the spectral filtering bandwidth, κ is the linear attenua-
tion factor per cavity round trip, and η�t� is δ-correlated
Langevin noise of amplitude ξ [11]:

η�t� � η1�t� � iη2�t�; hηi�t�i � 0;

hηi�t�ηj�t0�i � δi;jδ�t − t0�:

We denote by ψ�t� � �ReA; ImA;G;Q�T a real-valued
solution of (1). Direct numerical estimation of pulse tim-
ing jitter in DDE model (1)–(3) requires simulation of mil-
lions of cavity round trips [10,11]. As it was shown by
Haus and coauthors within the framework of the Haus
master equation [7,8], the small noise term can be treated
as a perturbation to a time-periodic system, and the tim-
ing jitter can be estimated by analyzing the properties of
the model equation in the vicinity of the mode-locked sol-
ution on a single period. In this report following this idea,
we develop a semi-analytical method for estimation of
pulse timing jitter σvar in DDE model (1)–(3), which re-
laxes a restriction of the Haus master equation regarding
small gain and loss per cavity round trip [12].
We consider a locally stable fundamental mode-locked

T0-periodic solution ψ0�t� � �ReA0; ImA0; G0; Q0�T of
system (1)–(3) with ξ � 0. Assuming ξ ≪ 1, we study
the local dynamics of trajectories of Eqs. (1)–(3) near
the periodic solution using linearization of the system
around this solution. Substituting ψ�t� � ψ0�t� � δψ�t�
into (1)–(3) and supposing that jδψ j ≪ 1 we obtain

−

d

dt
δψ�t��B�t�δψ�t��C�t− τ�δψ�t− τ��w�t�� 0; (4)

whereB andC are the Jacobi matrices of the linearization
[15], w�t� � ξ�Re η�t�; Im η�t�; 0; 0�T . The homogeneous
system (4) with w�t� ≡ 0 has two linearly independent
periodic solutions, the so-called neutral modes δψ0θ �
dψ0�t�∕dt and δψ0φ � �−ImA0;ReA0; 0; 0�T , which
correspond to the time shift ψ0�t� → ψ0�t� t0� and phase
shift A0�t� → eiνA0�t� symmetry of the system (1)–(3),
respectively.
Let δψ be a solution of homogeneous problem (4) with

w�t� ≡ 0 and a row vector δψ†�t� � �δψ†
1; δψ

†
2; δψ

†
3; δψ

†
4� be

a solution of the adjoint problem

d

dt
δψ†�t� � δψ†�t�B�t� � δψ†�t� τ�C�t� � 0: (5)

For solutions δψ of (4) and δψ† of (5), we consider the
following bilinear form [16,17]:

�δψ†; δψ ��t�

� δψ†�t�δψ�t� �
Z

0

−τ
δψ†�t� θ� τ�C�t� θ�δψ�t� θ�dθ:

(6)

Adjoint periodic eigenfunctions δψ†
0θ and δψ†

0φ (neutral
modes of (5)) are T0-periodic and satisfy biorthogonality
conditions �δψ†

0j; δψ0k� � δjk, where j; k � fθ;φg. Timing
jitter σvar is given by the variance of the projection of
the Langevin perturbation termw�t� on the neutral eigen-
function δψ0θ corresponding to the time shift invariance
of the model equations. Applying the variation of con-
stants formula [17] to Eq. (4), we obtain

σ2var � ξ2
Z

T0

0
f�δψ†

0θ;1�s��2 � �δψ†
0θ;2�s��2gds: (7)

The experiments were performed with two-section
monolithic quantum-dot mode-locked devices. The active
region consisted of 15 layers of InAs quantum-dots grown
on GaAs substrate at Innolume GmbH; for details of the
layer structure see [18]. The devices were cleaved with
no coatings applied to the facets and mounted on a tem-
perature controlled stage. We used a set of lasers with
different absorber lengths in the experiments.

Pulse timing jitter fluctuations were measured via the
integration of the normalized power spectral density
(PSD), LRF�f �, over a certain range [19,20]:

σi�f 1; f 2� �
Tr

2π

��������������������������������
2
Z

f 2

f 1

LRF�f �df
s

; (8)

where σi is an integrated timing jitter, f 1 and f 2 are the
integration limits, and Tr is the pulse train period. The
single sideband PSD was measured from the output
radio-frequency (RF) spectrum using an Advantest
electronic spectrum analyzer (ESA), a fast photodetec-
tor, and an amplifier. The normalized PSD is given by
the expression:

LRF�f � �
SRF�f �

RBW × St

; (9)

where St is the peak signal power, RBW is the resolution
bandwidth of the ESA, and SRF�f � is PSD. The single
sideband PSD was integrated over the range of
20 kHz–80 MHz as shown in Fig. 1(a), from both sides.

Figure 1(b) shows measured timing jitter for the lasers
P1 (red) and P2 (black) with 17% and 12% absorber sec-
tions and −1.0 V and −2.0 V reverse bias, respectively, as
a function of gain current. For the laser P1, the jitter de-
creases with the gain current, while for the laser P2, the
integrated jitter behavior was nonmonotonic with values
ranging from 11 to 23 ps.

Figure 2(a) shows measured RF spectrum evolution
versus gain current for the laser P3 with 20% absorber
section and −4.0 V reverse bias. The transition between
two mode-locked regimes can be seen at the gain current
of around 209 mA with shifts of the repetition rate and
optical spectrum (to longer wavelengths by 10 nm)
and decrease of jitter (from 3 ps for 209 mA to 0.6 ps
for 210 mA). Examples of the RF spectra at the transition
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point are shown in Fig. 2(b) by black and red lines for the
gain currents of 209 and 210 mA, respectively.
For our numerical analysis, we chose the parameters

of model Eqs. (1)–(3) to match those of a 10 GHz laser [5]:
τ � 100 ps, γ−1 � 0.5 ps, γ−1g � 500 ps, γ−1q � 10 ps,
q−10 � 5.56 ps, αq � 1, κ � 0.3, s � 10, and ξ � 0.05.
It has been previously noted that strong phase-ampli-

tude coupling in the gain and absorber sections can be
linked to complex dynamical behavior of semiconductor
lasers [12]. This strong coupling can be accounted for by
assuming that the difference between linewidth enhance-
ment factors αg − αq in the gain and absorber sections is
sufficiently large [5]. In Fig. 3, we chose the pumping
parameter g0 as the continuation parameter to obtain bi-
furcation diagrams with the help of the DDE-BIFTOOL
package [13]. In our numerical simulations, we do not ob-
serveQ-switching instability of mode-locked regime. Fur-
thermore, for low values of the linewidth enhancement
factor 1 ≤ αg < 4.5, a single branch of fundamental
mode-locking solution remains stable, whereas for higher
αg, more branches of stable fundamental mode-locking

can be observed near the lasing threshold. The timing
jitter was estimated using Eq. (7) by implementing a
MATLAB code for calculation of the eigenfunctions of
the adjoint eigenproblem (5). We find that a bistability
between two mode-locked regimes exists in the model
(1)–(3) for g0 between 6.048 and 6.05 ns−1, see Fig. 3(a).
We see from Fig. 3(b) that for each of the two branches
the timing jitter first decreases with increasing g0 and
then increases toward the instability threshold of the
mode-locking regime. Similarly to the experimental re-
sults of Fig. 2, timing jitter drops abruptly when the sol-
ution switches from the branch staring at the point A to
the branch starting at the point B. When the linewidth
enhancement factor αg is decreased to 5.2, the fold bifur-
cations disappear, see dash-dotted line in Fig. 3(a), and a
single branch of mode-locking regime remains stable.
However, as it is illustrated by the dash-dotted line in
Fig. 3(b), the pulse timing jitter dependence on the pump
parameter remains similar to that in the bistable case,
demonstrating large peaks near the former instability
points. These peaks become smaller for lower αg � 5.
Our simulations performed with the help of the software
package DDE-BIFTOOL indicate that the peaks of timing
jitter appear when one of the negative Lyapunov expo-
nents of the mode-locked solution ψ0�t� comes close
to zero with the change of the parameter g0. Such local
increase in the pulse timing jitter obtained numerically is
in agreement with the experimental results shown in
Fig. 1(b) for the laser P2. Finally, for sufficiently small
αg � 3.7, we observe monotonous decrease of the pulse
timing jitter with the increase of g0, which is in agreement
with the experimental data of [9] and the data obtained
with the laser P1, see Fig. 1(b).

In conclusion, we have studied theoretically and ex-
perimentally the effect of noise on the characteristics

Fig. 1. (a) Integration of timing jitter. Measured RF signal
(black, top curve), Lorentzian fit (red), and the noise floor
(blue, bottom curve), laser P2. (b) Integrated timing jitter for
lasers P1 (red, bottom curve) and P2 (black, top curve) versus
gain.
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Fig. 2. (a) Evolution of the RF spectrum with gain, laser P3.
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γ−1g � 500 ps, γ−1q � 10 ps, q−10 � 5.56 ps, αq � 1.
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of a two-section semiconductor laser operating in
fundamental mode-locking regime. We have proposed
a semi-analytical method for estimation of timing jitter
in a system of DDEs (1)–(3) describing this laser. The
proposed method can be applied to study noise charac-
teristics of other multimode laser devices modeled by
systems of delay-differential equations [11,15,21,22]. Us-
ing the software package DDE-BIFTOOL, we have stud-
ied the dependence of the timing jitter on the injection
current and other laser parameters and, in contrast to
previous theoretical results [9], we have demonstrated
that this dependence can be nonmonotonous. Specifi-
cally, we have observed a peak in the gain dependence
curve of timing jitter, which is related to the presence of a
real Lyapunov exponent approaching zero from below.
Our results suggest that in the bistable regime of opera-
tion the branch of mode-locking regime that is stable at
lower injection currents exhibits higher level of pulse
timing jitter. A sudden drop in the timing jitter is ob-
served when the laser switches to another branch of
mode-locking regime with the increase of the current.
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