Evidence For The Baryonic Decay $\bar{B} \rightarrow D^0 \Lambda\bar{\Lambda}$

UTD AUTHOR(S): Joseph M. Izen and Xinchou Lou

©2014 American Physical Society
Evidence for the baryonic decay $\bar{B}^0 \to D^0 \Lambda \Lambda$

(BABAR Collaboration)

1Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie,
CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3INFN Sezione di Bari, I-70126 Bari, Italy
4Dipartimento Universitario di Fisica, Università di Pavia, I-27100 Pavia, Italy
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

1550-7998/2014(89/11)/112002(9) © 2014 American Physical Society
Evidence is presented for the baryonic B meson decay $B^0 \rightarrow D^0 \Lambda \bar{\Lambda}$ based on a data sample of 471×10^6 $\bar{B}B$ pairs collected with the BABAR detector at the PEP-II asymmetric $e^+ e^-$ collider located at the SLAC National Accelerator Laboratory. The branching fraction is determined to be $B(B^0 \rightarrow D^0 \Lambda \bar{\Lambda}) = (9.8^{+2.9}_{-2.3} \pm 1.9) \times 10^{-6}$, corresponding to a significance of 3.4 standard deviations including additive systematic uncertainties. A search for the related baryonic B meson decay $\bar{B}^0 \rightarrow D^0 \Sigma^0 \Lambda$ with $\Sigma^0 \rightarrow \Lambda \gamma$ is performed and an upper limit $B(\bar{B}^0 \rightarrow D^0 \Sigma^0 \Lambda + \bar{B}^0 \rightarrow D^0 \Sigma^0) < 3.1 \times 10^{-5}$ is determined at 90% confidence level.

DOI: 10.1103/PhysRevD.89.112002 PACS numbers: 13.25.Hw, 13.60.Rj, 14.20.Lq

I. INTRODUCTION

Little is known about the mechanism of baryon production in weak decays or in the hadronization process. Baryons are produced in (6.8 \pm 0.6)% of all B meson decays [1]. Due to this large rate, B meson decays can provide important information about baryon production. Due to the low energy scale, perturbative quantum chromodynamics (QCD) cannot be applied to this process. Furthermore, lattice QCD calculations are not available. The description of baryonic B decays thus relies on phenomenological models.

Pole models [2] are a common tool used in theoretical studies of hadronic decays. Meson pole models predict an enhancement at low baryon-antibaryon masses. In many three-body decays into a baryon, an antibaryon and a meson, the baryon-antibaryon pair, can be described by a meson pole, i.e., the decay of a virtual meson with a mass below threshold. This leads to a steeply falling amplitude at the threshold of the baryon-antibaryon mass and explains the enhancement observed in decays such as $B^- \rightarrow \Lambda \bar{p} \pi^-$ [3,4], $B^- \rightarrow p \bar{p} K^-$ [5–7], and $B^0 \rightarrow D^0 p \bar{p}$ [8,9].
In addition to the meson pole models described above, there are baryon pole models in which the initial state decays through the strong interaction into a pair of baryons. Then, one of these baryons decays via the weak interaction into a baryon and a meson. For such baryon pole models, no enhancement at threshold in the dibaryon invariant mass is expected.

The decay of a B meson into a D^0 meson and a pair of baryons has been the subject of several theoretical investigations [10,11]. Reference [11] predicts the branching fractions for $B^0 \rightarrow D^0 \Lambda\Lambda$ decays and for the sum of the $B^0 \rightarrow D^0 \Sigma^0$ and $\bar{B}^0 \rightarrow D^0 \Sigma^0 \Lambda$ decays to be

\[
\begin{align*}
B(B^0 \rightarrow D^0 \Lambda\Lambda) &= (2 \pm 1) \times 10^{-6}, \\
B(\bar{B}^0 \rightarrow D^0 \Lambda\Sigma^0 + \bar{B}^0 \rightarrow D^0 \Sigma^0 \Lambda) &= (1.8 \pm 0.5) \times 10^{-5}.
\end{align*}
\]

(1)

It is impractical to separate the $B^0 \rightarrow D^0 \Lambda\Sigma^0$ and $\bar{B}^0 \rightarrow D^0 \Sigma^0 \Lambda$ decays since each leads to the final state $\Lambda\Lambda\pi\gamma$.

As can be seen from the Feynman diagrams shown in Fig. 1, the only difference between the $B^0 \rightarrow D^0 p\bar{p}$ decay on the one hand and the $B^0 \rightarrow D^0 \Lambda\Lambda$ and $B^0 \rightarrow D^0 \Sigma^0 \Lambda$ decays on the other hand is the replacement of a $u\bar{u}$ pair with an $s\bar{s}$ pair. In the hadronization process, $s\bar{s}$-pair production is suppressed by about a factor of three compared to $u\bar{u}$- or $d\bar{d}$-pair production [12]. Furthermore, since both Λ and Σ baryons can be produced, there are four possible final states with an $s\bar{s}$ pair ($\Lambda\Lambda$, $\Lambda\Sigma^0$, $\Sigma^0\Lambda$, and $\Sigma^0\Sigma^0$) compared to only one for a $u\bar{u}$ pair ($p\bar{p}$), neglecting the production of excited baryons. Assuming equal production rates for these four modes and that the spin-1/2 states dominate, a suppression of a factor of ~ 12 is expected for $B^0 \rightarrow D^0 \Lambda\Lambda$ decays compared to $B^0 \rightarrow D^0 p\bar{p}$ decays, where the branching fraction of the latter process is $B(B^0 \rightarrow D^0 p\bar{p}) = (1.04 \pm 0.04) \times 10^{-4}$ [11].

The branching fraction for $B^0 \rightarrow D^0 \Lambda\Lambda$ has been measured by the Belle Collaboration to be $B(B^0 \rightarrow D^0 \Lambda\Lambda) = (10.5^{+5.7}_{-4.4} \pm 1.4) \times 10^{-6}$ [13]. There are no previous results for the $\bar{B}^0 \rightarrow D^0 \Sigma^0 \Lambda$ decay mode.

FIG. 1 (color online). Leading-order Feynman diagrams for the decays $\bar{B}^0 \rightarrow D^0 N\bar{N}$. Setting $q = u$ leads to the $D^0 p\bar{p}$ final state and setting $q = s$ to the $D^0 \Lambda\Lambda$, $D^0 \Sigma^0 \Lambda$, $D^0 \Lambda\Sigma^0$, and $D^0 \Sigma^0 \Sigma^0$ final states.
deviations of the nominal value [1], where the standard deviation is the mass resolution. We select Λ candidates by requiring the flight significance \(L_r/\sigma_L \) to exceed 4, where \(L_r \) is the Λ flight length in the transverse plane and \(\sigma_L \), its uncertainty. The \(\Sigma^0 \) baryons are produced in the decay \(\Sigma^0 \rightarrow \Lambda \gamma \), and the photon is not reconstructed.

The \(D^0 \) daughter candidates are fit to a common vertex, and the reconstructed mass is required to lie within three times the mass resolution from their nominal values [1]. The signal-to-background ratio for \(D^0 \rightarrow K^-\pi^+\pi^0 \) is improved by making use of the resonant substructure of this decay, which is well known. Using results from the E691 Collaboration [21], we calculate the probability \(w_{\text{Dalitz}} \) for a \(D^0 \) candidate to be located at a certain position in the Dalitz plane. We require \(w_{\text{Dalitz}} > 0.02 \). Figure 2 shows the Dalitz plot distributions, based on simulation, for candidates selected with and without the \(w_{\text{Dalitz}} \) requirement.

The \(D^0 \) and Λ candidates are constrained to their nominal masses in the reconstruction of the \(B^0 \) candidates. We apply a fit to the entire decay chain and require the probability for the vertex fit to be larger than 0.001.

IV. FIT STRATEGY

We determine the number of signal candidates with a two-dimensional unbinned extended maximum likelihood fit to the invariant mass \(m(D^0\Lambda\bar{\Lambda}) \) and the energy substituted mass \(m_{ES} \). The latter is defined as

\[
m_{ES} = \sqrt{\left(s/2 + p_B \cdot \mathbf{p}_B\right)^2/E_B^2 - |\mathbf{p}_B|^2}.
\]

To reduce background from \(e^+e^- \rightarrow q\bar{q} \) events with \(q = u,d,s,c \), we apply a selection on a Fisher discriminant \(\mathcal{F} \) that combines the values of \(|\cos \theta_{\text{Thr}}| \), where \(\theta_{\text{Thr}} \) is the angle between the thrust axis of the B candidate and the thrust axis formed from the remaining tracks and clusters in the event; \(|\cos \theta_{\gamma}| \), where \(\theta_{\gamma} \) is the angle between the B thrust axis and the beam axis; \(|\cos \phi| \), where \(\phi \) is the angle between the B momentum and the beam axis; and the normalized second Fox Wolfram moment [22]. All these quantities are defined in the center-of-mass frame. All selection criteria are summarized in Table I.

TABLE I. Summary of selection criteria.

<table>
<thead>
<tr>
<th>Selection criterion</th>
<th>Selected candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda/\bar{\Lambda}) mass</td>
<td>(m_{ps} \in [1.112,1.120]) GeV/c^2</td>
</tr>
<tr>
<td>Flight significance (L_r/\sigma_L) > 4</td>
<td></td>
</tr>
<tr>
<td>(D^0 \rightarrow K^-\pi^+\pi^-) mass</td>
<td>(m_{K}\pi \in [1.846,1.882]) GeV/c^2</td>
</tr>
<tr>
<td>(D^0 \rightarrow K^-\pi^+\pi^-) mass</td>
<td>(m_{K\pi\pi} \in [1.852,1.876]) GeV/c^2</td>
</tr>
<tr>
<td>(0.05 < \text{LAT}(\gamma_2) < 0.55)</td>
<td></td>
</tr>
<tr>
<td>Lateral parameter (\gamma_1)</td>
<td></td>
</tr>
<tr>
<td>Lateral parameter (\gamma_2)</td>
<td></td>
</tr>
<tr>
<td>Calorimeter energy (E(\gamma_1))</td>
<td>(> 0.125) GeV</td>
</tr>
<tr>
<td>Calorimeter energy (E(\gamma_2))</td>
<td>(> 0.04) GeV</td>
</tr>
<tr>
<td>(\pi^0) mass</td>
<td>(m_{\gamma\gamma} \in [0.116,0.145]) GeV/c^2</td>
</tr>
<tr>
<td>(D^0 \rightarrow K^-\pi^+\pi^-) mass</td>
<td>(m_{K\pi\pi} \in [1.81,1.89]) GeV/c^2</td>
</tr>
<tr>
<td>Dalitz weight (w_{\text{Dalitz}})</td>
<td>(> 0.02)</td>
</tr>
<tr>
<td>B vertex probability (p(B))</td>
<td>(> 0.001)</td>
</tr>
<tr>
<td>Fisher discriminant (\mathcal{F})</td>
<td>(> 0.1)</td>
</tr>
</tbody>
</table>

To determine the shape of the signal, we use a Fisher discriminant

\[
f_{\text{Novosibirsk}}(m_{ES}) = \exp \left[-\frac{1}{2} \left(\ln^2\left[1 + \frac{1}{2\sigma^2} \left(\frac{m_{ES} - \mu}{\sigma} \right) \right] + \alpha^2 \right) \right],
\]

\[
\lambda = \sinh(\alpha \sqrt{\ln 4})/(\sigma\sqrt{\ln 4}),
\]

with \(\mu \) the mean value, \(\sigma \) the width, and \(\alpha \) the tail parameter. The decay \(B^0 \rightarrow D^0\Sigma^0 \Lambda \) is described by the product of a Novosibirsk \(f_{\text{Novosibirsk}} \) function in \(m_{ES} \) and a sum of another Novosibirsk function \(f_{\text{Novosibirsk}}^2 \) and a Gaussian \(\mathcal{G}^0 \) in...
where the index \(j \) corresponds to the three \(D^0 \) decay modes.

The branching fraction is determined from

\[
B(B^0 \rightarrow D^0 \Lambda \bar{\Lambda}) = \frac{N(B^0 \rightarrow D^0 \Lambda \bar{\Lambda})}{2N_{bgg} \times \bar{\epsilon}} \times \frac{1}{B(\Lambda \rightarrow p\pi)^2 B(D^0 \rightarrow X)},
\]

where \(N(B^0 \rightarrow D^0 \Lambda \bar{\Lambda}) \) is the fitted signal yield, \(N_{bgg} \) the number of the \(B^0 \bar{B}^0 \) pairs assuming \(B(\Upsilon(4S)4S \rightarrow B^0 \bar{B}^0) = 0.5 \), \(\bar{\epsilon} \) the average reconstruction efficiency, and \(B(\Lambda \rightarrow p\pi) \) and \(B(D^0 \rightarrow X) \) the branching fractions for the daughter decays of \(\Lambda \) and \(D^0 \), respectively. An analogous expression holds for \(B(\bar{B}^0 \rightarrow D^0 \Sigma^0 \bar{\Lambda}) \). The average efficiency \(\bar{\epsilon} \) is defined as \(N_{rec}/N_{gen} \) using signal MC events, where \(N_{rec} \) is the number of reconstructed signal events after all cuts and \(N_{gen} \) the number of all generated events assuming a phase space distribution.

We perform a simultaneous fit of the three \(D^0 \) decay channels to obtain

\[
\begin{align*}
N_{\Lambda} &= \frac{N(\bar{B}^0 \rightarrow D^0 \Lambda \bar{\Lambda})}{\bar{\epsilon}^3 B(D^0 \rightarrow X)}, \\
N_{\Sigma} &= \frac{N(\bar{B}^0 \rightarrow D^0 \Sigma^0 \bar{\Lambda})}{\bar{\epsilon}^2 B(D^0 \rightarrow X)}. \\
\end{align*}
\]

The likelihood function is given by

\[
L = \prod_j \frac{e^{-\bar{\epsilon}^3 \bar{B}_j N_{\Lambda}} + \bar{\epsilon}^3 \bar{B}_j N_{\Sigma}}{N(j)!} \prod_k \left[\bar{\epsilon}_j^k \bar{B}_j N_{\Lambda} f_j^k(m_{ESk}, m(D^0 \Lambda \bar{\Lambda})), \right. \\
&\left. + N_{BGk} B_j^k (m_{ESk}, m(D^0 \Lambda \bar{\Lambda})), \right. \\
&\left. + \bar{\epsilon}_j^k \bar{B}_j N_{\Lambda} f_j^k(m_{ESk}, m(D^0 \Lambda \bar{\Lambda})), \right],
\]

where \(B_j \) is the branching fraction for the \(j \)th \(D^0 \) decay, \(N_{BGk} \) the number of combinatorial background events in the \(j \)th subsample, \(N_{\Lambda} \) and \(N_{\Sigma} \) the yields of \(\bar{B}^0 \rightarrow D^0 \Lambda \bar{\Lambda} \) and \(\bar{B}^0 \rightarrow D^0 \Sigma^0 \bar{\Lambda} \), and \(\bar{\epsilon}_j^k \) and \(\bar{\epsilon}_j^0 \) the average efficiencies for the \(j \)th \(D^0 \) decay.

V. SYSTEMATIC UNCERTAINTIES

We consider the following systematic uncertainties: the uncertainties associated with the number of \(BB \) events, the particle identification (PID) algorithm, the tracking algorithm, the \(p\pi \) reconstruction, the \(D^0 \) and \(\Lambda \) branching fractions, the efficiency correction, and the fitting algorithm.

The uncertainty associated with the number of \(BB \) pairs is 0.6%. We determine the systematic uncertainty associated with the PID by applying different PID selections and comparing the result with the nominal selection. The difference is 0.8%, which is assigned as the PID uncertainty. The systematic uncertainty associated with the tracking algorithm depends on the number of charged
tracks in the decay. We assign a systematic uncertainty of 0.9% for the \(D^0 \rightarrow K^-\pi^+ \) and \(D^0 \rightarrow K^-\pi^+\pi^0 \) decays and 1.2% for the \(D^0 \rightarrow K^-\pi^+\pi^-\pi^- \) decay. A 3% uncertainty is assigned to account for the \(\pi^0 \rightarrow \gamma\gamma \) decay. A detailed description of these detector-related systematic uncertainties is given in Ref. [18].

We rely on the known \(D^0 \) branching fractions in our fit. To estimate the associated systematic uncertainty we vary each branching fraction by one standard deviation of its uncertainty [1] and define the systematic uncertainty to be the maximum deviation observed with respect to the nominal analysis. We divide \(m(\Lambda\bar{\Lambda}) \) into six bins and determine the total reconstruction efficiency \(\bar{e}_i \) in each bin. We determine the uncertainty due to the use of the average efficiency \(\bar{e} \) by studying \(|e_i - \bar{e}|/\bar{e} \) as a function of \(m(\Lambda\bar{\Lambda}) \).

We average these values and take the result of 16.3\% (\(D^0 \rightarrow K^-\pi^+ \)) , 19.6\% (\(D^0 \rightarrow K^-\pi^+\pi^0 \)), and 16.8\% (\(D^0 \rightarrow K^-\pi^+\pi^-\pi^- \)) as our estimate of the systematic uncertainty for the efficiency. We estimate the systematic uncertainty due to the fit procedure by independently varying the fit ranges of \(m_{ES} \) and \(m(D^0\Lambda\bar{\Lambda}) \). The largest differences in the signal yield are 3.9\% for the change of the \(m_{ES} \) fit range and 2.1\% for the change of the \(m(D^0\Lambda\bar{\Lambda}) \) fit range. To check our background model, we use a second-order polynomial in \(m(D^0\Lambda\bar{\Lambda}) \) instead of a first-order polynomial. The signal yield changes by 1.1\%. We use an ensemble of simulated data samples reflecting our fit results to verify the stability of the fit. We generate 1000 such samples with shapes and yields fixed to our results and repeat the final fit. We find no bias in the signal-yield results. All systematic uncertainties are summarized in Table II.

The total systematic uncertainty, obtained by adding all sources in quadrature, is 20.1\%.

<table>
<thead>
<tr>
<th>Source</th>
<th>Relative uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive uncertainty</td>
<td></td>
</tr>
<tr>
<td>Fit procedure</td>
<td>4.6%</td>
</tr>
<tr>
<td>Multiplicative uncertainties</td>
<td></td>
</tr>
<tr>
<td>(B\bar{B}) counting</td>
<td>0.6%</td>
</tr>
<tr>
<td>Particle identification</td>
<td>0.8%</td>
</tr>
<tr>
<td>Tracking</td>
<td></td>
</tr>
<tr>
<td>(D^0 \rightarrow K^-\pi^+)</td>
<td>0.9%</td>
</tr>
<tr>
<td>(D^0 \rightarrow K^-\pi^+\pi^0)</td>
<td>0.9%</td>
</tr>
<tr>
<td>(D^0 \rightarrow K^-\pi^+\pi^-\pi^-)</td>
<td>1.2%</td>
</tr>
<tr>
<td>(\pi^0) systematics</td>
<td></td>
</tr>
<tr>
<td>(D^0 \rightarrow K^-\pi^+\pi^0)</td>
<td>3.0%</td>
</tr>
<tr>
<td>(D^0) and (\Lambda) branching fractions</td>
<td>2.9%</td>
</tr>
<tr>
<td>Variation over phase space</td>
<td></td>
</tr>
<tr>
<td>(D^0 \rightarrow K^-\pi^+)</td>
<td>16.3%</td>
</tr>
<tr>
<td>(D^0 \rightarrow K^-\pi^+\pi^0)</td>
<td>19.6%</td>
</tr>
<tr>
<td>(D^0 \rightarrow K^-\pi^+\pi^-\pi^-)</td>
<td>16.8%</td>
</tr>
</tbody>
</table>

Total uncertainty 20.1\%
We further determine
\[
\frac{\mathcal{B}(\bar{B}^0 \to D^0 \Lambda \bar{\Lambda})_{\text{exp}}}{\mathcal{B}(\bar{B}^0 \to D^0 \Lambda \bar{\Lambda})_{\text{theo}}} = 4.9 \pm 3.0.
\] (11)

We further determine
\[
\frac{\mathcal{B}(\bar{B}^0 \to D^0 \Sigma^0 \bar{\Lambda} + \bar{B}^0 \to D^0 \bar{\Sigma}^0)}{\mathcal{B}(\bar{B}^0 \to D^0 \Lambda \bar{\Lambda})} = 1.5 \pm 0.9,
\] (12)

which is in agreement with our assumption that all four modes \(\bar{B}^0 \to D^0 \Lambda \bar{\Lambda}, \bar{B}^0 \to D^0 \Sigma^0 \bar{\Lambda}, \bar{B}^0 \to D^0 \bar{\Sigma}^0,\) and \(\bar{B}^0 \to D^0 \Sigma^0 \bar{\Sigma}^0\) are produced at equal rates. For the ratio of branching fractions, we find
\[
\frac{\mathcal{B}(\bar{B}^0 \to D^0 \Lambda \bar{\Lambda})}{\mathcal{B}(\bar{B}^0 \to D^0 p \bar{p})} = \frac{1}{10.6 \pm 3.7},
\] (13)

using \(\mathcal{B}(\bar{B}^0 \to D^0 p \bar{p}) = (1.04 \pm 0.04) \times 10^{-4}\) [1]. This is in agreement with the expected suppression of 1/12 discussed in the Introduction.
EVIDENCE FOR THE BARYONIC DECAY $B^0 \to D^0 \Lambda \bar{\Lambda}$

VII. SUMMARY

We find evidence for the baryonic B decay $\bar{B}^0 \to D^0 \Lambda \bar{\Lambda}$. We determine the branching fraction to be $\mathcal{B}(\bar{B}^0 \to D^0 \Lambda \bar{\Lambda}) = (9.8^{+2.6}_{-2.0} \pm 1.9) \times 10^{-6}$ with a significance of 3.4σ including additive systematic uncertainties. This is in agreement with the Belle measurement [13]. Within the statistical uncertainty, our results support either a moderate threshold enhancement or no enhancement at all. The result for the branching fraction is in agreement within 1.3 standard deviations with theoretical predictions based on measurements of $\bar{B}^0 \to D^0 p \bar{p}$ and with simple models of hadronization. We find no evidence for the decay $\bar{B}^0 \to D^0 \Sigma^0 \Lambda$ and calculate a Bayesian upper limit at 90% confidence level of $\mathcal{B}(\bar{B}^0 \to D^0 \Sigma^0 \Lambda + \bar{B}^0 \to D^0 \Lambda \Sigma^0) < 3.1 \times 10^{-5}$. This result is in agreement with the theoretical expectation.

ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A.P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel).

[19] Throughout this paper, all decay modes include the charge conjugated process.