Search for Dark Matter in Events with a Hadronically Decaying W or Z Boson and Missing Transverse Momentum in Pp Collisions at $\sqrt{S}=8$ TeV with the ATLAS Detector

G. Aad, et al.

© 2014 CERN. Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
A search is presented for dark matter pair production in association with a W or Z boson in pp collisions representing 20.3 fb⁻¹ of integrated luminosity at √s = 8 TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet mass consistent with a W or Z boson, and with large missing transverse momentum are analyzed. The data are consistent with the standard model expectations. Limits are set on the mass scale in effective field theories that describe the interaction of dark matter and standard model particles, and on the cross section of Higgs production and decay to invisible particles. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are set in two fiducial regions.

DOI: 10.1103/PhysRevLett.112.041802

PACS numbers: 13.85.Rm, 14.70.Fm, 14.80.Bn, 95.35.+d

Although the presence of dark matter in the Universe is well established, little is known of its particle nature or its nongravitational interactions. A suite of experiments is searching for a weakly interacting massive particle (WIMP), denoted by χ, and for interactions between χ and standard model (SM) particles [1].

One critical component of this program is the search for pair production of WIMPs at particle colliders, specifically pp → χχ at the Large Hadron Collider (LHC) via some unknown intermediate state. These searches have greatest sensitivity at low WIMP mass m_χ, where direct detection experiments are less powerful. At the LHC, the final-state WIMPs are invisible to the detectors, but the events can be detected if there is associated initial-state radiation of a SM particle [2]; an example is shown in Fig. 1.

The Tevatron and LHC collaborations have reported limits on the cross section of pp → χχ + X where X is a hadronic jet [2–4] or a photon [5,6]. Other LHC data have been reinterpreted to constrain models where X is a leptonically decaying W [7] or Z boson [8,9]. In each case, limits are reported in terms of the mass scale M_χ of the unknown interaction expressed in an effective field theory as a four-point contact interaction [10–18]. In the models considered until now, the strongest limits come from monojet analyses, due to the large rate of gluon or quark initial-state radiation relative to photon, W or Z boson radiation. The operators studied in these monojet and monophoton searches assume equal couplings of the dark matter particles to up-type and down-type quarks [C(u) = C(d)]. For W boson radiation there is interference between the diagrams in which the W boson is radiated from the u quark or the d quark. In the case of equal coupling, the interference is destructive and gives a small W boson emission rate. If, however, the up-type and down-type couplings have opposite signs [C(u) = −C(d)] to give constructive interference, the relative rates of gluon, photon, W or Z boson emission can change dramatically [7], such that mono-W-boson production is the dominant process.

In this Letter, a search is reported for the production of W or Z bosons decaying hadronically (to q ¯q' or q ¯q, respectively) and reconstructed as a single massive jet in association with large missing transverse momentum from the undetected χχ particles. This search, the first of its kind, is sensitive to WIMP pair production, as well as to other dark-matter-related models, such as invisible Higgs boson decays (WH or ZH production with H → χχ).

The ATLAS detector [19] at the LHC covers the pseudorapidity [20] range |η| < 4.9 and the full azimuthal angle φ. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and an external muon spectrometer incorporating large superconducting toroidal magnets. A three-level trigger system is used to select interesting events for recording and subsequent offline analysis. Only data for which beams were stable and all subsystems described

![Diagram of particle interactions](image)

FIG. 1. Pair production of WIMPs (χχ) in proton–proton collisions at the LHC via an unknown intermediate state, with initial-state radiation of a W boson.
above were operational are used. Applying these require-
ments to pp collision data, taken at a center-of-mass energy of \(\sqrt{s} = 8 \) TeV during the 2012 LHC run, results in a data sample with a time-integrated luminosity of 20.3 fb\(^{-1}\). The systematic uncertainty on the luminosity is derived, follow-
ing the same methodology as that detailed in Ref. [21], from a preliminary calibration of the luminosity scale obtained from beam-separation scans performed in November 2012.

Jet candidates are reconstructed using the Cambridge–Aachen algorithm [22] with a radius parameter of 1.2, and selected using a mass-drop filtering procedure [23,24], referred to as large-radius jets. These large-radius jets are supposed to capture the hadronic products of both quarks from W or Z boson decay. The internal structure of the large-radius jet is characterized in terms of the momentum balance of the two leading subjets, as \(\sqrt{\Delta} = \min(p_{T1}, p_{T2}) \Delta R/m_{\text{jet}} \) where \(\Delta R = \sqrt{(\Delta \phi_{1,2})^2 + (\Delta \eta_{1,2})^2} \) and \(m_{\text{jet}} \) is the calculated mass of the jet. Jet candidates are also reconstructed using the anti-\(k_t \) clustering algorithm [25] with a radius parameter of 0.4, referred to as narrow jets. The inputs to both algorithms are clusters of energy deposits in calorimeter cells seeded by those with energies significantly above the measured noise and calibrated at the hadronic energy scale [26]. Jet momenta are calculated by performing a four-vector sum over these clusters, treating each topologi-
cal cluster [26] as an \((E, \vec{p})\) four vector with zero mass. The direction of \(\vec{p} \) is given by the line joining the reconstructed interaction point with the energy cluster. Missing transverse momentum \(E^\text{miss}_T \) is measured using all clusters of energy deposits in the calorimeter with \(|\eta| < 4.5\). Electrons, muons, jets, and \(E^\text{miss}_T \) are recon-
structed as in Refs. [26–29], respectively. The recon-
struction of hadronic W boson decays with large-radius jets is validated in a \(t\bar{t} \)-dominated control region with one muon, one large-radius jet (\(p_T > 250 \) GeV, \(|\eta| < 1.2\)), two additional narrow jets (\(p_T > 40 \) GeV, \(|\eta| < 4.5\)) separated from the leading large-radius jet, at least one \(b \) tag, and \(E^\text{miss}_T > 250 \) GeV (Fig. 2).

Candidate signal events are accepted by an inclusive \(E^\text{miss}_T \) trigger that is more than 99% efficient for events with \(E^\text{miss}_T > 150 \) GeV. Events with significant detector noise and noncollision backgrounds are rejected as described in Ref. [3]. In addition, events are required to have at least one large-radius jet with \(p_T > 250 \) GeV, \(|\eta| < 1.2\), \(m_{\text{jet}} \) between 50 GeV and 120 GeV, and \(\sqrt{\Delta} > 0.4 \) to suppress background without hadronic W or Z boson decays. Two signal regions are defined by two thresholds in \(E^\text{miss}_T \): 350 and 500 GeV. To suppress the \(\mu \bar{\mu} \) background and multijet background, events are rejected if they contain more than one narrow jet with \(p_T > 40 \) GeV and \(|\eta| < 4.5 \) which is not completely overlapping with the leading large-radius jet by a separation of \(\Delta R > 0.9 \), or if any narrow jet has \(\Delta \phi(E^\text{miss}_T \text{ jet}) < 0.4 \). Finally, to suppress contributions from \(W \rightarrow \ell \nu \) production, events are rejected if they have any electron, photon, or muon candidates with \(p_T > 10 \) GeV and \(|\eta| < 2.47, 2.37, \) or 2.5, respectively.

The dominant source of background events is \(Z \rightarrow \nu \bar{\nu} \) production in association with jets from initial-state radi-
ation. A secondary contribution comes from production of jets in association with W or Z bosons with leptonic decays in which the charged leptons fail identification require-
ments or the \(\tau \) leptons decay hadronically. These three backgrounds are estimated by extrapolation from a common data control region in which the selection is identical to that of the signal regions except that the muon veto is inverted and \(W/Z + \text{ jets} \) with muon decays are the dominant processes. In this muon control region dominated by \(W/Z + \text{ jets} \) with muon decays, the combined W and Z boson contribution is measured after subtracting other sources of background that are estimated using MC simulation [30] based on GEANT4 [31]. Two extrapolation factors from the contribution of \(W/Z + \text{ jets} \) in the muon control region to the contributions of \(Z \rightarrow \nu \bar{\nu} + \text{ jets} \) and \(W/Z + \text{ jets} \) with leptonic decays in the muon-veto signal region, respectively, are derived as a function of \(m_{\text{jet}} \) from simulated samples of W and Z boson production in association with jets that are generated using sherpA1.4.1 [32] and the CT10 [33] parton distribution function (PDF) set. A second control region is defined with two muons and \(E^\text{miss}_T > 350 \) GeV, which has limited statistics and is used only for the validation of the Z boson contribution. The W boson contribution is validated in a low-\(E^\text{miss}_T \) control region with the same selection as the signal region but 250 GeV < \(E^\text{miss}_T \) < 350 GeV.

Other sources of background are diboson production, top quark pair production, and single-top production, which are estimated using simulated events. The MC@NLO.04.03 generator [34] using the CT10 PDF with the AUET2 [35] tune, interfaced to HERWIG6.520 [36] and JIMMY4.31 [37] for the
simulation of underlying events, is used for the productions of $t\bar{t}$ and single-top processes, both s-channel and Wt production. The single-top, t-channel process is generated with ACERMC3.8 [38] interfaced to PYTHIA8.1 using the AUET2B [35] tune. The diboson (ZZ, WZ, and WW) samples are produced using HERWIG6.520 and JIMMY4.31 with the CTEQ6L1 PDF and ACERMC3.8 [38] interfaced to PYTHIA8.1 using the AU2T2B [35] tune. The diboson (ZZ, WZ, and WW) samples are produced using HERWIG6.520 and JIMMY4.31 with the CTEQ6L1 PDF and AUET2B tune.

Background contributions from multijet production in which large E_T^{miss} is due to mismeasured jet energies are estimated by extrapolating from a sample of events with two jets and are found to be negligible [3].

Samples of simulated $pp \rightarrow W\phi\phi$ and $pp \rightarrow Z\phi\phi$ events are generated using MADGRAPH5 [41], with showering and hadronization modeled by PYTHIA8.1 using the AU2T2B [35] tune and CT10 PDF, including b quarks in the initial state. Four operators are used as a representative set based on the definitions in Ref. [14]: $C1$ scalar, $D1$ scalar, $D5$ vector (both the constructive and destructive interference cases), and $D9$ tensor. In each case, $m_\chi = 1, 50, 100, 200, 400, 700, 1000,$ and 1300 GeV are used. The dominant sources of systematic uncertainty are due to the limited number of events in the control region, theoretical uncertainties in the simulated samples used for extrapolation, uncertainties in the large-radius jet energy calibration and momentum resolution [23], and uncertainties in the E_T^{miss}. Additional minor uncertainties are due to the levels of initial-state and final-state radiation, parton distribution functions, lepton reconstruction and identification efficiencies, and momentum resolution.

The data and predicted backgrounds in the two signal regions are shown in Table I for the total number of events and in Fig. 3 for the m_{jet} distribution. The data agree well with the background estimate for each E_T^{miss} threshold. Exclusion limits are set on the dark matter signals using the predicted shape of the m_{jet} distribution and the CLs method [42], calculated with toy simulated experiments in which the systematic uncertainties have been marginalized. Figure 4 shows the exclusion regions at 90% confidence level (C.L.) in the M_χ vs m_{jet} plane for various operators, where M_χ need not be the same for the different operators.

TABLE I. Data and estimated background yields in the two signal regions. Uncertainties include statistical and systematic contributions.

<table>
<thead>
<tr>
<th>Process</th>
<th>$E_T^{miss} > 350$ GeV</th>
<th>$E_T^{miss} > 500$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \rightarrow \nu\nu$</td>
<td>402$^{+39}_{-34}$</td>
<td>54$^{+8}_{-10}$</td>
</tr>
<tr>
<td>$W \rightarrow \ell^+\nu$, $Z \rightarrow \ell^\pm\ell^\mp$</td>
<td>210$^{+20}_{-18}$</td>
<td>22$^{+4}_{-5}$</td>
</tr>
<tr>
<td>WW, WZ, ZZ</td>
<td>57$^{+11}_{-11}$</td>
<td>9.1$^{+1.3}_{-1.1}$</td>
</tr>
<tr>
<td>$t\bar{t}$, single t</td>
<td>39$^{+10}_{-10}$</td>
<td>3.7$^{+1.7}_{-1.1}$</td>
</tr>
<tr>
<td>Total</td>
<td>707$^{+48}_{-38}$</td>
<td>89$^{+9}_{-12}$</td>
</tr>
<tr>
<td>Data</td>
<td>705</td>
<td>89</td>
</tr>
</tbody>
</table>

Limits on the dark matter–nucleon scattering cross sections are reported using the method of Ref. [14] in Fig. 5 for both the spin-independent ($C1$, $D1$, $D5$) and the spin-dependent interaction model ($D9$). References [14,50] discuss the valid region of the effective field theory, which becomes a poor approximation if the mass of the intermediate state is below the momentum transferred in the interaction. The results are compared with measurements from direct detection experiments [43–49].
This search for dark matter pair production in association with a W or Z boson extends the limits on the dark matter–nucleon scattering cross section in the low mass region $m_\chi < 10$ GeV where the direct detection experiments have less sensitivity. The new limits are also compared to the limits set by ATLAS in the 7 TeV monojet analysis [3]. For the spin-independent case with the opposite-sign up-type and down-type couplings, the limits are improved by about 3 orders of magnitude, as the constructive interference leads to a very large increase in the W-boson-associated production cross section. For other cases, the limits are similar.

To complement the effective field theory models, limits are calculated for a simple dark matter production theory with a light mediator, the Higgs boson. The upper limit on the cross section of Higgs boson production through WH and ZH modes and decay to invisible particles is 1.3 pb at 95% C.L. for $m_H = 125$ GeV. Figure 6 shows the upper limit of the total cross section of WH and ZH processes with $H \rightarrow \chi \chi$, normalized to the SM next-to-leading order prediction for the WH and ZH production cross section (0.8 pb for $m_H = 125$ GeV) [51], which is 1.6 at 95% C.L. for $m_H = 125$ GeV.

In addition, limits are calculated on dark matter $W\chi\chi$ or $Z\chi\chi$ production within two fiducial regions defined at parton level: $p_T^{W/Z} > 250$ GeV, $|\eta^{W/Z}| < 1.2$; two quarks from W or Z boson decay with $\sqrt{s}/s > 0.4$; at most one additional narrow jet [$p_T > 40$ GeV, $|\eta| < 4.5$, ΔR (narrow jet, W or Z) > 0.9]; no electron, photon, or muon with $p_T > 10$ GeV and $|\eta| < 2.47, 2.37$, or 2.5, respectively; $p_T^{D9} > 350$ or 500 GeV. The fiducial efficiencies are similar for various dark matter signals, and the smallest value is $(63 \pm 1)\%$ in both fiducial regions. The observed upper limit on the fiducial cross section is 4.4 fb (2.2 fb) at 95% C.L. for $p_T^{D9} > 350$ GeV (500 GeV) and the expected limit is 5.1 fb (1.6 fb) with negligible dependence on the dark matter production model.

In conclusion, this Letter reports the first LHC limits on dark matter production in events with a hadronically decaying W or Z boson and large missing transverse momentum. In the case of constructive interference between up-type and down-type contributions, the results set the strongest limits on the mass scale of M_χ of the unknown mediating interaction, surpassing those from the monojet signature.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; NRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MINE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; U.S. DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark,
Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (U.S.), and in the Tier-2 facilities worldwide.

[20] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Polar coordinates (r, φ) are used in the transverse (x, y) plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = −ln tan(θ/2).
PRL 112, 041802 (2014) PHYSICAL REVIEW LETTERS 31 JANUARY 2014
School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, The University of Michigan, Ann Arbor, Michigan, USA

Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA

INFN Sezione di Milano, Italy

Dipartimento di Fisica, Università di Milano, Milano, Italy

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada

P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

INFN Sezione di Napoli, Italy

Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy

Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb, Illinois, USA

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

Department of Physics, New York University, New York, USA

Ohio State University, Columbus, Ohio, USA

Faculty of Science, Okayama University, Okayama, Japan

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA

Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA

Palacký University, RCPTM, Olomouc, Czech Republic

Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA

LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

INFN Sezione di Padova, Italy

INFN Sezione di Trieste, Italy

INFN Sezione di Venezia, Italy

University of Rome “La Sapienza”, Rome, Italy

INFN Sezione di Roma Tor Vergata, Italy

INFN Sezione di Roma Tre, Italy

Dipartimento di Matematica e Fisica, Università di Roma Tre, Roma, Italy

Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco

Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat, Morocco
Phenomenology of the Weak Neutral Current

136c Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
136d Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
136e Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEASaclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, SantaCruz, California, USA

139 Department of Physics, University of Washington, Seattle, Washington, USA

140 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

141 Department of Physics, Shinshu University, Nagano, Japan

142 Fachbereich Physik, Universität Siegen, Siegen, Germany

143 Department of Physics, Simon Fraser University, Burnaby BC, Canada

144 SLAC National Accelerator Laboratory, Stanford, California, USA

145 University of California, Irvine, Irvine, California, USA

146a Physics Department, The Weizmann Institute of Science, Rehovot, Israel

146b Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

146c Department of Physics, University of the Witwatersrand, Johannesburg, South Africa

146d Department of Physics, University of Cape Town, Cape Town, South Africa

146e Department of Physics, University of Johannesburg, Johannesburg, South Africa

146f School of Physics, University of Wisconsin, Madison, Wisconsin, USA

147 Department of Physics, Stockholm University, Sweden

147a Department of Physics, Stockholm University, Sweden

147b The Oskar Klein Centre, Stockholm, Sweden

148 Physics Department, Royal Institute of Technology, Stockholm, Sweden

148a Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic

149a Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece

149b also at Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

150 Physics Department, Royal Institute of Technology, Stockholm, Sweden

151 a Deceased.
b Also at Department of Physics, King’s College London, London, United Kingdom.
c Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal.
d Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

152 School of Physics, University of Sydney, Sydney, Australia

153 Institute of Physics, Academia Sinica, Taipei, Taiwan

154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

156 The Oskar Klein Centre, Stockholm, Sweden

156a Physics Department, Royal Institute of Technology, Stockholm, Sweden

156b Physics Department, Royal Institute of Technology, Stockholm, Sweden

157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

159 Department of Physics, University of Tokyo, Tokyo, Japan

159a Department of Physics, University of Toronto, Toronto, Ontario, Canada

159b TRIUMF, Vancouver BC, Canada

160 Department of Physics and Astronomy, York University, Toronto, Ontario, Canada

161 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

162 Department of Physics and Astronomy, TafTs University, Medford, Massachusetts, USA

163 Centro de Investigaciones, Universidad AntonioNarino, Bogota, Colombia

164 Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA

164a INFN Gruppo Collegato di Udine, Udine, Italy

164b ICTP, Trieste, Italy

164c Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

165 INFN Gruppo Collegato di Udine, Udine, Italy

165a INFN Gruppo Collegato di Udine, Udine, Italy

165b INFN Gruppo Collegato di Udine, Udine, Italy

165c INFN Gruppo Collegato di Udine, Udine, Italy

166 Department of Physics, University of Illinois, Urbana, Illinois, USA

166a Department of Physics, University of Illinois, Urbana, Illinois, USA

166b Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

167a Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada

167b Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica BarcElona (IMB-CN,M), University of Valencian and CSIC, Valencia, Spain

169 Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada

170 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

171 Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada

172 Waseda University, Tokyo, Japan

173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

174 Department of Physics, University of Wisconsin, Madison, Wisconsin, USA

175 Fachbereich Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

176 Department of Physics, Yale University, New Haven, Connecticut, USA

177 Department of Physics, Yale University, New Haven, Connecticut, USA

178 Yerevan Physics Institute, Yerevan, Armenia

179 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France